Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mutagenesis of Puccinia graminis f. sp. tritici and Selection of Gain-of-Virulence Mutants.

Identifieur interne : 000104 ( Main/Exploration ); précédent : 000103; suivant : 000105

Mutagenesis of Puccinia graminis f. sp. tritici and Selection of Gain-of-Virulence Mutants.

Auteurs : Ngonidzashe Kangara [Royaume-Uni] ; Tomasz J. Kurowski [Royaume-Uni] ; Guru V. Radhakrishnan [Royaume-Uni] ; Sreya Ghosh [Royaume-Uni] ; Nicola M. Cook [Royaume-Uni] ; Guotai Yu [Royaume-Uni] ; Sanu Arora [Royaume-Uni] ; Brian J. Steffenson [États-Unis] ; Melania Figueroa [Australie] ; Fady Mohareb [Royaume-Uni] ; Diane G O. Saunders [Royaume-Uni] ; Brande B H. Wulff [Royaume-Uni]

Source :

RBID : pubmed:33072145

Abstract

Wheat stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), is regaining prominence due to the recent emergence of virulent isolates and epidemics in Africa, Europe and Central Asia. The development and deployment of wheat cultivars with multiple stem rust resistance (Sr) genes stacked together will provide durable resistance. However, certain disease resistance genes can suppress each other or fail in particular genetic backgrounds. Therefore, the function of each Sr gene must be confirmed after incorporation into an Sr-gene stack. This is difficult when using pathogen disease assays due to epistasis from recognition of multiple avirulence (Avr) effectors. Heterologous delivery of single Avr effectors can circumvent this limitation, but this strategy is currently limited by the paucity of cloned Pgt Avrs. To accelerate Avr gene cloning, we outline a procedure to develop a mutant population of Pgt spores and select for gain-of-virulence mutants. We used ethyl methanesulphonate (EMS) to mutagenize urediniospores and create a library of > 10,000 independent mutant isolates that were combined into 16 bulks of ~658 pustules each. We sequenced random mutants and determined the average mutation density to be 1 single nucleotide variant (SNV) per 258 kb. From this, we calculated that a minimum of three independently derived gain-of-virulence mutants is required to identify a given Avr gene. We inoculated the mutant library onto plants containing Sr43, Sr44, or Sr45 and obtained 9, 4, and 14 mutants with virulence toward Sr43, Sr44, or Sr45, respectively. However, only mutants identified on Sr43 and Sr45 maintained their virulence when reinolculated onto the lines from which they were identified. We further characterized 8 mutants with virulence toward Sr43. These also maintained their virulence profile on the stem rust international differential set containing 20 Sr genes, indicating that they were most likely not accidental contaminants. In conclusion, our method allows selecting for virulent mutants toward targeted resistance (R) genes. The development of a mutant library from as little as 320 mg spores creates a resource that enables screening against several R genes without the need for multiple rounds of spore multiplication and mutagenesis.

DOI: 10.3389/fpls.2020.570180
PubMed: 33072145
PubMed Central: PMC7533539


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mutagenesis of 
<i>Puccinia graminis</i>
 f. sp. 
<i>tritici</i>
and Selection of Gain-of-Virulence Mutants.</title>
<author>
<name sortKey="Kangara, Ngonidzashe" sort="Kangara, Ngonidzashe" uniqKey="Kangara N" first="Ngonidzashe" last="Kangara">Ngonidzashe Kangara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kurowski, Tomasz J" sort="Kurowski, Tomasz J" uniqKey="Kurowski T" first="Tomasz J" last="Kurowski">Tomasz J. Kurowski</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford</wicri:regionArea>
<wicri:noRegion>Bedford</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Radhakrishnan, Guru V" sort="Radhakrishnan, Guru V" uniqKey="Radhakrishnan G" first="Guru V" last="Radhakrishnan">Guru V. Radhakrishnan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Sreya" sort="Ghosh, Sreya" uniqKey="Ghosh S" first="Sreya" last="Ghosh">Sreya Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cook, Nicola M" sort="Cook, Nicola M" uniqKey="Cook N" first="Nicola M" last="Cook">Nicola M. Cook</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Guotai" sort="Yu, Guotai" uniqKey="Yu G" first="Guotai" last="Yu">Guotai Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arora, Sanu" sort="Arora, Sanu" uniqKey="Arora S" first="Sanu" last="Arora">Sanu Arora</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Steffenson, Brian J" sort="Steffenson, Brian J" uniqKey="Steffenson B" first="Brian J" last="Steffenson">Brian J. Steffenson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mohareb, Fady" sort="Mohareb, Fady" uniqKey="Mohareb F" first="Fady" last="Mohareb">Fady Mohareb</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford</wicri:regionArea>
<wicri:noRegion>Bedford</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saunders, Diane G O" sort="Saunders, Diane G O" uniqKey="Saunders D" first="Diane G O" last="Saunders">Diane G O. Saunders</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wulff, Brande B H" sort="Wulff, Brande B H" uniqKey="Wulff B" first="Brande B H" last="Wulff">Brande B H. Wulff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33072145</idno>
<idno type="pmid">33072145</idno>
<idno type="doi">10.3389/fpls.2020.570180</idno>
<idno type="pmc">PMC7533539</idno>
<idno type="wicri:Area/Main/Corpus">000057</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000057</idno>
<idno type="wicri:Area/Main/Curation">000057</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000057</idno>
<idno type="wicri:Area/Main/Exploration">000057</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mutagenesis of 
<i>Puccinia graminis</i>
 f. sp. 
<i>tritici</i>
and Selection of Gain-of-Virulence Mutants.</title>
<author>
<name sortKey="Kangara, Ngonidzashe" sort="Kangara, Ngonidzashe" uniqKey="Kangara N" first="Ngonidzashe" last="Kangara">Ngonidzashe Kangara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kurowski, Tomasz J" sort="Kurowski, Tomasz J" uniqKey="Kurowski T" first="Tomasz J" last="Kurowski">Tomasz J. Kurowski</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford</wicri:regionArea>
<wicri:noRegion>Bedford</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Radhakrishnan, Guru V" sort="Radhakrishnan, Guru V" uniqKey="Radhakrishnan G" first="Guru V" last="Radhakrishnan">Guru V. Radhakrishnan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Sreya" sort="Ghosh, Sreya" uniqKey="Ghosh S" first="Sreya" last="Ghosh">Sreya Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cook, Nicola M" sort="Cook, Nicola M" uniqKey="Cook N" first="Nicola M" last="Cook">Nicola M. Cook</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Guotai" sort="Yu, Guotai" uniqKey="Yu G" first="Guotai" last="Yu">Guotai Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arora, Sanu" sort="Arora, Sanu" uniqKey="Arora S" first="Sanu" last="Arora">Sanu Arora</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Steffenson, Brian J" sort="Steffenson, Brian J" uniqKey="Steffenson B" first="Brian J" last="Steffenson">Brian J. Steffenson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mohareb, Fady" sort="Mohareb, Fady" uniqKey="Mohareb F" first="Fady" last="Mohareb">Fady Mohareb</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford</wicri:regionArea>
<wicri:noRegion>Bedford</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saunders, Diane G O" sort="Saunders, Diane G O" uniqKey="Saunders D" first="Diane G O" last="Saunders">Diane G O. Saunders</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wulff, Brande B H" sort="Wulff, Brande B H" uniqKey="Wulff B" first="Brande B H" last="Wulff">Brande B H. Wulff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crop Genetics Department, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wheat stem rust caused by the fungus
<i>Puccinia graminis</i>
f. sp.
<i>tritici</i>
(
<i>Pgt</i>
), is regaining prominence due to the recent emergence of virulent isolates and epidemics in Africa, Europe and Central Asia. The development and deployment of wheat cultivars with multiple stem rust resistance (
<i>Sr</i>
) genes stacked together will provide durable resistance. However, certain disease resistance genes can suppress each other or fail in particular genetic backgrounds. Therefore, the function of each
<i>Sr</i>
gene must be confirmed after incorporation into an
<i>Sr</i>
-gene stack. This is difficult when using pathogen disease assays due to epistasis from recognition of multiple avirulence (Avr) effectors. Heterologous delivery of single
<i>Avr</i>
effectors can circumvent this limitation, but this strategy is currently limited by the paucity of cloned
<i>Pgt Avrs</i>
. To accelerate
<i>Avr</i>
gene cloning, we outline a procedure to develop a mutant population of
<i>Pgt</i>
spores and select for gain-of-virulence mutants. We used ethyl methanesulphonate (EMS) to mutagenize urediniospores and create a library of > 10,000 independent mutant isolates that were combined into 16 bulks of ~658 pustules each. We sequenced random mutants and determined the average mutation density to be 1 single nucleotide variant (SNV) per 258 kb. From this, we calculated that a minimum of three independently derived gain-of-virulence mutants is required to identify a given
<i>Avr</i>
gene. We inoculated the mutant library onto plants containing
<i>Sr43</i>
,
<i>Sr44</i>
, or
<i>Sr45</i>
and obtained 9, 4, and 14 mutants with virulence toward
<i>Sr43</i>
,
<i>Sr44</i>
, or
<i>Sr45</i>
, respectively. However, only mutants identified on
<i>Sr43</i>
and
<i>Sr45</i>
maintained their virulence when reinolculated onto the lines from which they were identified. We further characterized 8 mutants with virulence toward
<i>Sr43</i>
. These also maintained their virulence profile on the stem rust international differential set containing 20
<i>Sr</i>
genes, indicating that they were most likely not accidental contaminants. In conclusion, our method allows selecting for virulent mutants toward targeted resistance (
<i>R</i>
) genes. The development of a mutant library from as little as 320 mg spores creates a resource that enables screening against several
<i>R</i>
genes without the need for multiple rounds of spore multiplication and mutagenesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33072145</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Mutagenesis of 
<i>Puccinia graminis</i>
 f. sp. 
<i>tritici</i>
and Selection of Gain-of-Virulence Mutants.</ArticleTitle>
<Pagination>
<MedlinePgn>570180</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.570180</ELocationID>
<Abstract>
<AbstractText>Wheat stem rust caused by the fungus
<i>Puccinia graminis</i>
f. sp.
<i>tritici</i>
(
<i>Pgt</i>
), is regaining prominence due to the recent emergence of virulent isolates and epidemics in Africa, Europe and Central Asia. The development and deployment of wheat cultivars with multiple stem rust resistance (
<i>Sr</i>
) genes stacked together will provide durable resistance. However, certain disease resistance genes can suppress each other or fail in particular genetic backgrounds. Therefore, the function of each
<i>Sr</i>
gene must be confirmed after incorporation into an
<i>Sr</i>
-gene stack. This is difficult when using pathogen disease assays due to epistasis from recognition of multiple avirulence (Avr) effectors. Heterologous delivery of single
<i>Avr</i>
effectors can circumvent this limitation, but this strategy is currently limited by the paucity of cloned
<i>Pgt Avrs</i>
. To accelerate
<i>Avr</i>
gene cloning, we outline a procedure to develop a mutant population of
<i>Pgt</i>
spores and select for gain-of-virulence mutants. We used ethyl methanesulphonate (EMS) to mutagenize urediniospores and create a library of > 10,000 independent mutant isolates that were combined into 16 bulks of ~658 pustules each. We sequenced random mutants and determined the average mutation density to be 1 single nucleotide variant (SNV) per 258 kb. From this, we calculated that a minimum of three independently derived gain-of-virulence mutants is required to identify a given
<i>Avr</i>
gene. We inoculated the mutant library onto plants containing
<i>Sr43</i>
,
<i>Sr44</i>
, or
<i>Sr45</i>
and obtained 9, 4, and 14 mutants with virulence toward
<i>Sr43</i>
,
<i>Sr44</i>
, or
<i>Sr45</i>
, respectively. However, only mutants identified on
<i>Sr43</i>
and
<i>Sr45</i>
maintained their virulence when reinolculated onto the lines from which they were identified. We further characterized 8 mutants with virulence toward
<i>Sr43</i>
. These also maintained their virulence profile on the stem rust international differential set containing 20
<i>Sr</i>
genes, indicating that they were most likely not accidental contaminants. In conclusion, our method allows selecting for virulent mutants toward targeted resistance (
<i>R</i>
) genes. The development of a mutant library from as little as 320 mg spores creates a resource that enables screening against several
<i>R</i>
genes without the need for multiple rounds of spore multiplication and mutagenesis.</AbstractText>
<CopyrightInformation>Copyright © 2020 Kangara, Kurowski, Radhakrishnan, Ghosh, Cook, Yu, Arora, Steffenson, Figueroa, Mohareb, Saunders and Wulff.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kangara</LastName>
<ForeName>Ngonidzashe</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kurowski</LastName>
<ForeName>Tomasz J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Radhakrishnan</LastName>
<ForeName>Guru V</ForeName>
<Initials>GV</Initials>
<AffiliationInfo>
<Affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghosh</LastName>
<ForeName>Sreya</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cook</LastName>
<ForeName>Nicola M</ForeName>
<Initials>NM</Initials>
<AffiliationInfo>
<Affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Guotai</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arora</LastName>
<ForeName>Sanu</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steffenson</LastName>
<ForeName>Brian J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Figueroa</LastName>
<ForeName>Melania</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mohareb</LastName>
<ForeName>Fady</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saunders</LastName>
<ForeName>Diane G O</ForeName>
<Initials>DGO</Initials>
<AffiliationInfo>
<Affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wulff</LastName>
<ForeName>Brande B H</ForeName>
<Initials>BBH</Initials>
<AffiliationInfo>
<Affiliation>Crop Genetics Department, John Innes Centre, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Puccinia graminis f. sp. tritici</Keyword>
<Keyword MajorTopicYN="N">avirulence</Keyword>
<Keyword MajorTopicYN="N">effectors</Keyword>
<Keyword MajorTopicYN="N">ethyl methanesulphonate mutagenesis</Keyword>
<Keyword MajorTopicYN="N">wheat</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>5</Hour>
<Minute>56</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33072145</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.570180</ArticleId>
<ArticleId IdType="pmc">PMC7533539</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1961 Feb 10;133(3450):357-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17815826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2020 Aug;56:20-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32244171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Feb 12;351(6274):684-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26912853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 May;168(1):321-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25770154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Jan;29(1):156-168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28087830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Biol. 2019 Feb 4;2:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30729187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):786-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23811228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Aug;177(4):1352-1367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29880705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Dec 04;5:692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Biol. 2018 Feb 8;1:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30271900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jun;13(6):629-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10830262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2019 Oct 24;15:118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31666804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Sep;22(9):1160-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 08;5:759</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25620970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9483-E9492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29078294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jul;219(1):45-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29205390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Feb;26(2):191-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23035914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Aug 25;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26304198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2016 Oct 31;17(1):221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27795210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2019 Aug 8;9(8):2415-2423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31213517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2003 Jan 1;4(1):51-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Feb 28;11(1):1123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32111840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20644199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2019 Feb;37(2):139-143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30718880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 22;358(6370):1607-1610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2018 Aug 25;56:67-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30149791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Aug 06;3(8):e2875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Aug 22;17:667</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27550217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 Mar 13;3:17027</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28288096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1986 May;6(5):1838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3023907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 May 10;15:354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24885922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Oct 3;8(1):14718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30283062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):783-786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23811222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jan 14;5:7773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25586962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 May;27(5):722-736</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28298431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2020 Feb 1;36(3):934-935</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31392327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2019 Sep 19;8:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31535976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24405032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 22;358(6370):1604-1606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):E913-E921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2017 Jun;130(6):1207-1222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28275817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Jul;27(7):624-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24678835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2016 Jun;34(6):652-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27111722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 1;27(15):2156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Jan;14(1):51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25689669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Sep;13(7):719-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22293108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2000 Feb;84(2):203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30841334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2003 Jul;1(4):241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Nov 7;10(1):5068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31699975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011;12(3):R28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21429190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Jul;20(7):981-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20472684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:513-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25923844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Jan;225(2):948-959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31487050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 19;9(11):e112963</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25409509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Sep;79(6):904-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24942074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Nov 30;1:15186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27251721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24156769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Dec 11;13:694</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Mar 1;35(3):543-548</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29220515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2018 Apr 3;14(4):e1007287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29614079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Feb 9;7(2):413-425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28040779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Oct;22(10):1203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737094</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Minnesota</li>
</region>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Kangara, Ngonidzashe" sort="Kangara, Ngonidzashe" uniqKey="Kangara N" first="Ngonidzashe" last="Kangara">Ngonidzashe Kangara</name>
</noRegion>
<name sortKey="Arora, Sanu" sort="Arora, Sanu" uniqKey="Arora S" first="Sanu" last="Arora">Sanu Arora</name>
<name sortKey="Cook, Nicola M" sort="Cook, Nicola M" uniqKey="Cook N" first="Nicola M" last="Cook">Nicola M. Cook</name>
<name sortKey="Ghosh, Sreya" sort="Ghosh, Sreya" uniqKey="Ghosh S" first="Sreya" last="Ghosh">Sreya Ghosh</name>
<name sortKey="Kurowski, Tomasz J" sort="Kurowski, Tomasz J" uniqKey="Kurowski T" first="Tomasz J" last="Kurowski">Tomasz J. Kurowski</name>
<name sortKey="Mohareb, Fady" sort="Mohareb, Fady" uniqKey="Mohareb F" first="Fady" last="Mohareb">Fady Mohareb</name>
<name sortKey="Radhakrishnan, Guru V" sort="Radhakrishnan, Guru V" uniqKey="Radhakrishnan G" first="Guru V" last="Radhakrishnan">Guru V. Radhakrishnan</name>
<name sortKey="Saunders, Diane G O" sort="Saunders, Diane G O" uniqKey="Saunders D" first="Diane G O" last="Saunders">Diane G O. Saunders</name>
<name sortKey="Wulff, Brande B H" sort="Wulff, Brande B H" uniqKey="Wulff B" first="Brande B H" last="Wulff">Brande B H. Wulff</name>
<name sortKey="Yu, Guotai" sort="Yu, Guotai" uniqKey="Yu G" first="Guotai" last="Yu">Guotai Yu</name>
</country>
<country name="États-Unis">
<region name="Minnesota">
<name sortKey="Steffenson, Brian J" sort="Steffenson, Brian J" uniqKey="Steffenson B" first="Brian J" last="Steffenson">Brian J. Steffenson</name>
</region>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000104 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000104 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33072145
   |texte=   Mutagenesis of Puccinia graminis f. sp. tritici and Selection of Gain-of-Virulence Mutants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33072145" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020